
© 2018 JETIR June 2018, Volume 5, Issue 6                                                           www.jetir.org  (ISSN-2349-5162)  
 

JETIRC006066 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 376 
 

ROLE OF BODY ACCELERATION AND SLIP 

VELOCITY ON NON-NEWTONIAN PULSATILE 

FLOW OF BLOOD THROUGH A STENOSED 

ARTERY 
 

Amit Bhatnagar & Vijay Kumar 
Department of Mathematics, IAS, Mangalayatan University, Aligarh, India 

 

R K Shrivastav 
Department of Mathematics, Agra College, Agra, India 

 

 

 

ABSTRACT-In the present analysis, the effect of external body acceleration and slip velocity on the non-Newtonian pulsatile 

flow of blood through a constricted blood vessel is discussed. The flow of blood in arteries is characterized as Bingham-Plastic 

fluid. The stenosis to be shown in the artery is taken to be overlapping stenoses. By applying a perturbation technique and 

expanding the axial velocity and shear stress in terms of Womersley frequency parameter α2, the computable expression of axial 

velocity profile, shear stress at arterial wall, volumetric flow rate and apparent viscosity are obtained. The deviations of the flow 

characteristics under the influence of various parameters are presented graphically. It is observed that flow rate and velocity of 

blood escalate due to the influence of body acceleration and a velocity slip. To justify the validity of the model, comparisons are 

made with the existing results. 
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INTRODUCTION 

 Blood plays a vital role when it flows through a normal as well as diseased artery. In diseased artery, blood flow is often 

blocked due to abnormal tissue growth, called stenosis, in the arterial lumen. The cardiovascular diseases are one of the major 

reasons of the deaths in developed and developing countries. The blockage of blood flow in the coronary artery leads to angina 

pain and cardiac arrest. Abnormal flow of blood causes an unsteady pressure on the walls of arteries and the heart pumps the 

blood into the arteries in cyclic manner which creates the pulsatile flow of blood in the arteries. 

 Many times, external body acceleration or variations is applied to human body, for example, situation like rapid action of 

a tennis player, flying in an aircraft or a vibration therapy given to a heart patient etc. In the above situations, external body 

acceleration is applied to a particular part of the entire body which may disturbs the flow of blood and its normal functioning. 

When the body is exposed to these variations for a long time, it may cause some severe health problems. So the effect of the 

periodic body acceleration may play a significant role in the diagnosis and treatment of health problems. 

 To quantify the effect of periodic body acceleration on flow behaviour of blood, Elshehawey et al [1], El-shahed et al 

[2], Nagarani et al [3] and Biswas et al [4] studied the Newtonian and the non-Newtonian character of blood flow through normal 

and stenosed arteries taking no velocity slip condition. Mandal et al [5] discussed the generalized Power-law fluid model of 

nonlinear flow of blood through tapered vessel with time variant overlapping stenoses. Mishra et al [6] explained the effect of bell 

shaped stenosis on the non-Newtonian flow of blood and investigated the problem using analytical and numerical techniques. 

Blood is modeled as Herschel-Bulkley fluid. Taking blood as a Newtonian fluid, Verma et al [7], Biswas et al [8] and Srivastava 

et al [9 & 10] has done a fair amount of theoretical and experimental studies to illuminate the effect of stenosis on flow of blood 

through and beyond the constricted vessel. Sarojamma et al [11] studied the influence of body acceleration on the flow of blood 

through a catheterized artery with cosine shaped geometry of stenosis. It is noticed that flow resistance is considerably reduced on 

application of periodic body acceleration. Assuming the artery to be a cylindrical tube with time-dependent radius having mild 

stenosis, Varshney et al [12] developed a mathematical model for the pulsatile flow of blood through a stenosed tapered artery 

imposing external body acceleration and solved the equation of motion numerically using finite difference method. Bhatnagar et 

al [13] developed a mathematical model for analyzing the flow characteristics of blood through an atherosclerotic arterial segment 

taking the velocity slip condition at the arterial wall. Blood is considered as Herschel-Bulkley fluid flowing in a uniform right 

circular tube having a composite stenosis. Kakati et al [14] analyzed the Newtonian flow of blood to show the influence of body 

acceleration, porous medium and uniform magnetic field on flow behaviour of blood through tapered artery with mild stenosis. 

Ramana Reddy et al [15] studied the model of blood flow through a catheterized artery having mild overlapping stenosis and 

deciphered the governing equation and expressed the flow characteristics analytically. D. S. Sankar [16] analyzed pulsatile flow 

of blood by treating the blood in the core region as Casson fluid and the plasma in the peripheral layer as Newtonian fluid through 

mild stenosed narrow arteries. Bhatnagar et al [17 & 18] studied the slip effect on the Newtonian and non-Newtonian nature of 

blood flow through the non symmetric and overlapping stenosed artery. 

 The present analysis is proposed to analyze the effect of velocity slip on the pulsatile flow of blood through a narrow 

artery having overlapping stenoses under the application of periodic body acceleration. Non-Newtonian nature of blood is 
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illustrated by Bingham-Plastic fluid model. It is believed that this investigation may aid the bio-engineers in the production and 

improvement of the artificial organs and the development of new diagnostic mechanism to treat cardiovascular diseases. 

 

FORMULATION OF THE PROBLEM 

 Let us consider one dimensional fully developed, pulsatile, laminar and symmetric flow of blood through an artery in the 

presence of external periodic body acceleration. The artery is assumed to be rigid circular tube with overlapping stenoses inside 

its lumen. The geometry of overlapping stenoses in the lumen of artery is depicted (Srivastava et al [10]) in figure 1 as 
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Figure 1: Overlapping stenoses in the arterial segment 

 

Where ( )R z   is the radius of artery in the constricted region, R0 is the radius outside the stenotic region, 
0 0( 3 2)L l  is the 

length of the constriction, d  specifies the position of stenosis, stenosis has greatest height,  , at the two throats of stenosis 

0 2z d l     and 
0z d l    . At the middle of stenosis i.e. 

03 4z d l    , the height of stenosis is 3 4   which is called 

critical height. The periodic body acceleration applied on the pulsatile flow of blood may be determined as: 

                                                                            0 1( ) cosA t A t                                                                     (2) 

Where
1 12 f   , 1f  is the frequency of body acceleration in Hertz, A0 represents the amplitude of body acceleration, lead 

angle is denoted by . To neglect the wave effects, the frequency 1f  is taken to be small. 

The pressure gradient at any z may be expressed as follows: 
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Where
2 22 f  , 2f  is the pulse frequency, B0 denotes the steady component and B1 denotes the fluctuating component of 

pressure gradient. The equation of motion governing flow of blood can be obtained as 
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The non-Newtonian nature of blood is represented by Bingham-Plastic fluid model whose constitutive equation is given by: 
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Where   is designated for shearing stress, c   for yield stress and   for viscosity of blood. 

The boundary conditions subject to the above equations are as follows: 

                                                               at ( )su u r R z                  (6) 

         is finite at 0r                                                                         (7) 

Where su  signifies the slip velocity at the constricted wall. 

Now, dimensionless variables are set up as: 
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Then equation (4) transforms into: 
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Where   symbolize Womersley frequency parameter and is given by: 
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The constitutive equation of Bingham-Plastic fluid changes into dimensionless form as: 
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Non-dimensional boundary conditions from (6a & 6b) are as follows: 

                                                                              at ( )su u r R z                                                                      (11) 

                                                                             is finite at 0r                                                                       (12) 

Dimensionless variables from (7), change (1) into 
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SOLUTION OF THE PROBLEM 

Perturbation technique is used to solve the partial differential equations (9) and (10) expanding the shear stress and the axial 

velocity of blood in powers of small number, Womersley frequency parameter,  , which is given below: 
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Substituting equations (14) and (15) in (9) and comparing the coefficients of
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2 , we obtain, 
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Integrating equation (16) and using boundary condition (12), we have, 

                             0 ( )rg t                                                                       (18) 

From equation (11) and (14), it can be seen that, 

             0 1 and 0 at ( )su u u r R z                                                                  (19) 

On putting the values of and from equations (14) and (15) in (10), we get 
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Integrating equation (20) and using (18) and (19), u0 is obtained as 
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Putting the value of u0 from equation (22) in (17), 1 is expressed as  
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Using equation (23) in (21), u1 may be written as 
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Thus from equations (14), (15), (18), (22), (23) and (24), the expressions of velocity profile and shear stress are obtained as 
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From equation (26), shearing stress at the wall i.e. r = R(z) is given by 
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where  ( ) ( )f g t g t  

The non-dimensional volumetric flow rate Q is formulated as  
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The apparent viscosity in dimensionless form may be specified as 
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NUMERICAL COMPUTATION AND DISCUSSION OF RESULTS 

The significant computational effort has been done to quantify the effects of various parameters involved in the study. The 

purpose of the present investigations is to bring out the influences of periodic body acceleration, slip velocity and overlapping 

stenoses on the pulsatile flow of blood where blood is taken to be a non-Newtonian fluid characterizing by Bingham-Plastic fluid 

model. The analytical expressions of velocity profile, flow rate, wall shear stress and apparent viscosity are derived applying 

perturbation technique. The graphs of above expressions are exhibited using MATLAB 7.8. The parametric values of slip velocity 

(us = 0, 0.2, 0.5), Womersley frequency parameter (β = 0.5), the amplitude of pressure gradient (a = 0.1 to 0.5), yield stress (τc = 

0.05 to 0.3), dimensionless stenosis height (δ = 0 to 0.6), the body acceleration parameter (h = 0 to 1) and lead angle (φ = 0.2) 

have been taken from Sarojamma et al [11], Varshney et al [12] and Kakati et al [14]. 

 

 Figures 2 and 3 reveal the variation of axial velocity along radial distance and time (in degrees). In these figures, it can 

be observed that velocity is maximum near the centre and minimum near the wall of artery. Slip velocity augments the velocity 

profile and eases the blood flow. The profile is reduced by stenosis but enhances with the application of periodic body 

acceleration. The velocity decreases in the first half cycle from 0˚ to 180˚ and increases from 180˚ to 360˚. 

 

 The effect of body acceleration on wall shear stress is exposed in Figure 4 where one can see that shear stress attains 

greater values for increasing values of body acceleration parameter from t = 0˚ to 90˚ and 270˚ to 360˚ i.e., in the first and fourth 

quadrant and in the remaining space i.e., in the second and third quadrant, the shear stress decreases for increasing body 

acceleration parameter. The figure also depicts the comparison between the cases where body acceleration is applied and where it 

is not applied. In figure 5, shear stress is varied along axial length for various values of stenosis height where it is observed that 

wall shear stress is highest at the two stenosis throats and least at the extremities of stenosis and for increasing stenosis height it 

also augments considerably. 
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 Figures 6 and 7 portray that apparent viscosity increases with increasing body acceleration parameter and stenosis height 

but decreased by slip velocity. It is minimum at 180˚ and maximum at 0˚ and 360˚. It diminishes in the first half of cycle from t = 

0˚ to 180˚ and increases in the second half of cycle from t = 180˚ to 360˚ 

 

 The changes in volumetric flow rate along with stenosis height and time for different values of body acceleration 

parameter and slip velocity are shown in figures 8 and 9. It can be noticed that acceleration parameter and slip velocity enhances 

the flow rate while it is decreased when stenosis height increases. It declines from highest to lowest in the first two quadrants and 

starts augmenting again from minimum (t = 180˚) to maximum (t = 360˚). 

 

 
Figure 2: Axial velocity along radial distance for various values of slip velocity (us) and body acceleration parameter 

(h) 

 

 
Figure 3: Axial velocity with time (in degrees) for various values of non dimensional stenosis height (δ) 
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Figure 4: Wall shear stress with time for various values of body acceleration parameter (h) 

 

 
Figure 5: Wall shear stress along axial distance for various values of stenosis height (δ) 

 

 
Figure 6: Apparent viscosity with stenosis height for various values of slip velocity (us) 
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Figure 7: Apparent viscosity with time for various values of body acceleration parameter (h) 

 
Figure 8: Volumetric flow rate with stenosis height for various values of slip velocity (us) and body acceleration 

parameter (h) 

 
Figure 9: Volumetric flow rate with time for various values of slip velocity (us) 
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CONCLUSION 

The present work investigates the pulsatile flow of blood through an arterial segment embedded with overlapping stenoses in 

the presence of periodic body acceleration. The velocity slip is applied at the vessel wall as a boundary condition. Blood is 

characterized as Bingham-Plastic fluid to represent the non-Newtonian behaviour of blood. Using the perturbation method, the 

governing equation of flow is deciphered and the analytical expressions for flow variables are derived. The axial velocity and 

flow rate are diminished with increasing stenosis height while apparent viscosity and wall shear stress are enhanced. Slip velocity 

helps in maintaining all these flow characteristics. Now body acceleration parameter increases velocity profile and flow rate but 

decreases apparent viscosity. Acceleration parameter also reduces wall shear stress from t = 90˚ to 270˚ in one cycle but increases 

for remaining part. This sort of variations in flow behaviour of blood may aid the medical practitioners, bio-engineers and 

physicians in treatment of diseased arterial circulation, making decision of application of such types of therapies, developing and 

improving artificial organs, better understanding of severity of stenosis and its consequences.  
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